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Overview
This document presents the development experience and results obtained within the StorAge

project. One of the parts of the project was the development of an electrocardiogram (ECG)

interpretation system on a field programmable gate array (FPGA) platform. This document

refers specifically to that part of the StorAIge project, omitting everything that does not concern

the magic of AI and its implementation on the FPGA.

We use the following open-source software and

technologies - Tensorflow/Keras/Pynq/HLS4ML as

high-level tools to achieve our goal. Thus, this

document is essentially a digest of all the most

interesting things that we encountered while working

on the project and what was hidden in open sources

or not clearly described concerning this software. Of

course, the emphasis is on practical value for

additional study and in no way a comprehensive

guide to learning AI. Some things in the document

are presented as well known, but make reading more

comfortable for an uninitiated specialist. It is impossible to create a document that describes in

detail the process of developing a deep learning system from building and training a model in

Python to implementing a working solution on an FPGA through conversion chains and

synthesis, so some things remain beyond our attention.
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HW/SW solution in general
In a nutshell, we developed FPGA-based Neural Network for Multi-Class Classification of

preprocessed ECG. Diagnosis of heart rhythms is solved using the canonical Machine Learning

method of classification using a pre-trained model. However, the technical solution to this

problem is made by a non-trivial way of interpreting segmented electrocardiogram (ECG) signals

on a field programmable gate array (FPGA) platform. Segmentation of the ECG signal in the first

stage and, therefore, possible classification by a compact model in the second stage, allows

achieving the results required for Edge AI. Hardware implementation of ML algorithms further

increases this efficiency.

Two stages processing of ECG for resource-efficient classification:

● Resampling and amplitude normalization

● 5 QRS peaks segmentation
● Spatial normalization in 8.5 s window
● Low / High pass Filtering (by DWT)
● Denoising with wavelets (by DWT)
● Removing baseline wander (by DWT)
● Augmentation

● 2 x 2831 samples input (5-QRS segments)

● 2 x Convolutions extract spatial features

● 3 x Fully-connected layers
● 4 Classes categorical classification

Segmentation and spatial normalization allow the use of a small Neural Network with just

22626 (88.38 KB) parameters.
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ECG data
Minimal knowledge of ECG and dataset
ECG is the primary, non-invasive, and inexpensive technique popular for heart abnormality

diagnosis. An ECG is a graphic recording of electrical impulses and stimulus variations to the

time captured using electrodes. The ECG machine processes the signals picked up from the

skin by electrodes and produces a graphic representation of the electrical activity of the

patient's heart. The basic pattern of this electrical activity was first discovered over a hundred

years ago. It comprises three waves, which have been named P, QRS (a wave complex), and T

(see Figure 1) [1].

Figure 1. The basic pattern of

electrical activity across the heart.

Any variation in the source,

rhythm, and rate of these electrical

stimuli is reflected in the

characteristic P-QRS-T waveforms

that imply cardiac arrhythmia. As a

non-invasive test, long term ECG

monitoring is a major and vital

diagnostic tool for detecting these

conditions. This practice, however,

generates large amounts of data,

the analysis of which requires considerable time and effort by human experts. Advances in

modern Machine Learning and statistical tools enable training on high-quality big data to

achieve exceptional levels of automated diagnostic accuracy. Such classification methods

require large size data that contain all prevalent types of conditions for algorithm training

purposes. We use this Chapman University database that we found for free download and which

is described in detail in the scientific paper [2]:

https://www.nature.com/articles/s41597-020-0386-x

https://www.nature.com/articles/s41597-020-0386-x
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The dataset contains 12-lead ECGs from 10,646 patients, containing 11 common rhythms

and 67 additional cardiovascular conditions, all labeled by professional experts. Data can be

downloaded from [3]:

https://figshare.com/collections/ChapmanECG/4560497/2

We need 3 files Diagnostics.xlsx , ECGData.zip , ECGDataDenoised.zip that we need

to be placed/unzipped into:

~/StorAIge/SignalDatabase/Chapman/ECGData/

~/StorAIge/SignalDatabase/Chapman/ECGDataDenoised/

~/StorAIge/SignalDatabase/Chapman/Diagnostics/

Data recorded as CSV files contain 5000 rows and 12 columns with header names presenting

the ECG lead.

The standard ECG uses 10 cables to obtain 12 electrical views of the heart [1]. The different lead

signals reflect the angles at which electrodes "look" at the heart and the direction of the heart's

electrical depolarization. The first 6 leads are Limb leads. The rest 6 leads are Chest leads.

Three bipolar leads and three unipolar leads are obtained from three electrodes attached to the

left arm, the right arm, and the left leg, respectively. (An electrode is also attached to the right

leg, but this is an earth electrode.) The bipolar limb leads reflect the potential difference

between two of the three limb electrodes:

● lead I: right arm–left arm

● lead II: right arm–left leg

● lead III: left leg–left arm

The unipolar leads reflect the potential difference between one of the three limb electrodes and

an estimate of zero potential – derived from the remaining two limb electrodes. These leads are

known as augmented leads. The augmented leads and their respective limb electrodes are:

● aVR lead: right arm

● aVL lead: left arm

● aVF lead: left leg

https://figshare.com/collections/ChapmanECG/4560497/2
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By building test Machine Learning models on datasets with varying numbers of ECG leads,

we found that the simplest release could only use the first 2 leads. Testing did not reveal a

significant deterioration in accuracy when classifying different types of arrhythmias. So, for

simplicity, we only take the first two measurements from the ECG data files. These CSV files are

named by unique IDs. We only use denoised ECG data files and diagnoses files.

Continuing simplifications, we also reduced the number of diagnoses to 4.

We transformed the Chapman University dataset into a significantly different one:

● Using 2 leads only

● Label quantity reduced from 11 to 4

● Аmplitude and spatial normalization

○ Sampling rate reduced from 500 to 333 samples per second

○ 10-second sample reduced to 8.5-second

○ The sample is segmented with 5-heart beats with 3-rd heartbeat placed in the

center

Resampling, reducing label quantity and amplitude normalization
Our python script ecg_saple_class.py defines source labels as the following:

# Acronym Name | Rhythm | Frequency (%)

# -------------|---------------------------------------------|---------------

self.ECG_labels = [

'AF', # Atrial Flutter | 445 (4.18)

'AFIB', # Atrial Fibrillation | 1,780 (16.72)

'SR', # Sinus Rhythm | 1,826 (17.15)

'AT', # Atrial Tachycardia | 121 (1.14)

'AVNRT', # Atrioventricular Node Reentrant Tachycardia | 16 (0.15)

'AVRT', # Atrioventricular Reentrant Tachycardia | 8 (0.07)

'SA', # Sinus Arrhythmia (SI - Sinus Irregularity) | 399 (3.75)

'SAAWR', # Sinus Atrium to Atrial Wandering Rhythm | 7 (0.07)

'SB', # Sinus Bradycardia | 3,889 (36.53)

'ST', # Sinus Tachycardia | 1,568 (14.73)

'SVT', # Supraventricular Tachycardia | 587 (5.51)

]

# ---------------------------------------------------------------------------

# Total: | 10,646 (100)
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These 11 labels are reduced to 4 ones:

self.labels = ['SR', 'SB', 'AF', 'GSVT']

In the following way:

labels_dict = dict()

for i in range(len(self.ECG_labels)):

if self.ECG_labels[i] in ['SR', 'SA']:

labels_dict[self.ECG_labels[i]] = 0

elif self.ECG_labels[i] == 'SB':

labels_dict[self.ECG_labels[i]] = 1

elif self.ECG_labels[i] in ['AF', 'AFIB']:

labels_dict[self.ECG_labels[i]] = 2

else:

labels_dict[self.ECG_labels[i]] = 3

Primary Sample Extractor pse.py is exactly the script that should be executed first and that
extracts data from the original Chapman University dataset doing validation, resampling,
reducing label quantity and amplitude normalization. At this stage, the simplification ends, but a
rather complex data transformation begins.

Note: These above mentioned scripts and the rest files of the project can be obtained from the
gitlab repository [4]: https://git.strikersoft.com/edgeai/ecg

~ cd StorAIge

~/StorAIge/ git clone https://git.strikersoft.com/edgeai/ecg

~/StorAIge/ git switch dev

Spatial normalization
We found an opportunity to convert ECG data into a form that can be analyzed with sufficient

accuracy even by a simple ML algorithm that does not require excessive resources. This

conversion is done at the stage before the execution of the AI algorithms in a software way, but

can be embedded in the solution on the FPGA. The main idea is spatial normalization. The

proposed Machine Learning model makes inference from the spatial features of extracted and

processed time-window of original ECG and classifies the signal into four arrhythmia types. The

5 heartbeat segments are extracted and aligned to be in a time window of 2831 samples of 8.5

https://git.strikersoft.com/edgeai/ecg
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seconds in length such that the 3-rd beat segment is fixed by keeping the R peak in the

center (sample 1416). The signals are cropped/padded if they are longer/shorter than 2831

samples.

To get it smooth and right the Discrete Wavelet Transform (DWT) is used. Corrected DWT

coefficients of DWT-decomposed segment window signals for each ECG lead are used for

filtering, denoising and removing baseline wander while DWT-reconstracting. Such

preprocessing allows to reach good results without extracting spectral features and keep the

model simple doing the Deep Learning AI algorithms.

ECG data as input for AI/ML
An AI/ML input refers to an example (sometimes also known as sample, observation or data

point) 𝑥 from a dataset that we pass to the AI/ML model. Since we have an ECG in the form of a

time series of samples 𝑥j for j from 1 to 2831, we will use the term sample 𝑥j to denote the point

on the ECG received from the ADC, and for the AI​​/ML input we will use the term example 𝑥i. Each

example 𝑥i in turn is a vector that consists of samples 𝑥j. We collect pre-processed (segmented,

normalized, etc.) ECG examples 𝑥i as labeled dataset D = {(xi,yi)}Ni=1 , where 𝑥i is the ith input and

yi the corresponding label (aka target or output). Thus AI/ML is the function 𝑓:𝑋→𝑌, then 𝑥∈𝑋 is

the input and 𝑓(𝑥) = 𝑦∈𝑌 is the output of the function for that input vector or tensor 𝑥.

The pse.py script we run first to get the data we need from the primary Chapman University

dataset gives us the following report:

100%|██████████| 10646/10646 [03:18<00:00, 53.50it/s]

Dataset len: 10588

100%|██████████| 10588/10588 [00:07<00:00, 1440.59it/s]

(10588, 3333, 2) (10588, 4)
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'X' is (10588, 3333, 2), 10588 samples x 3333 timesteps. 'y' is (10588, 4) labels, 10588 length

Sample points: 3333

Sample leads: 2

LABELS: ['SR', 'SB', 'AF', 'GSVT']

===================

This means that of the 10,646 records found in the Chapman University dataset, only 10,588

were valid for our follow-up and the first two ECG leads. Resampling was performed and an

intermediate dataset with shape (10588, 3333, 2) was formed. That is, 3333 samples of a

10-second window for two ECG leads in a dataset of 10588 examples. Every example is labeled

with one of four possible abbreviations ['SR', 'SB', 'AF', 'GSVT']. Looking at the pse.py and

ecg_saple_class.py scripts, we can see that the scripts further standardize (normalize) and

convert the ECG signals to numpy arrays and represent the labels as OneHot encoding vectors.

This intermediate dataset is written to the pse/ecg_data_set.npz file.

The following segmentation.py script launched for spatial normalization converts the

intermediate dataset into the target one with the following report:

X: (10588, 3333, 2)

sample_index: None debug: False

83%|████████▎ | 8789/10588 [01:59<00:26, 66.87it/s]Exception: index 0 is out of bounds for axis 0 with size 0, 8778, SB

100%|█████████▉| 10587/10588 [02:34<00:00, 34.47it/s]

segments: (23511, 2831, 2)

dwt_high_coeffs: (23511, 363, 2)

dwt_mid_coeffs: (23511, 187, 2)

dwt_low_coeffs: (23511, 99, 2)

100%|██████████| 10588/10588 [02:36<00:00, 67.71it/s]

This means that example 8789 was rejected because it failed the 5-peak segmentation test.

Another very important feature of this script is the augmentation of the data set to the level of

23511 examples. This became possible because from ECG signals that have a large (different)

number of QRS-peaks, we form signals that have exactly 5 peaks. But, it is clear that

segmentation is the most interesting. This segmented dataset is saved in

pse/ecg_data_set_segments.npz as a numpy array and is used as an input source for the next

script that should prepare input data for AI/ML. This start.ipynb script is Jupyter Notebook that

splits dataset into train and test parts with the following report from the 3-rd cell:

Loading of Segmented ECGs ...

Segmented ECGs are loaded and 'X', 'y', and 'Age' are prepared and saved

The type of 'X' data is <class 'numpy.ndarray'>

The type of 'y' data is <class 'numpy.ndarray'>

'X' is (23511, 2831, 2), 23511 samples x 2831 timesteps. 'y' is (23511, 4) labels, 23511 length

===================
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############################################

Sample points: 2831

Sample leads: 2

X_ecg_train shape: (19511, 2831, 2), X_ecg_test shape: (4000, 2831, 2)

X_age_train shape: (19511,) , X_age_test shape: (4000,)

y_train shape: (19511, 4) , y_test shape: (4000, 4)

LABELS: ['SR' 'SB' 'AF' 'GSVT']

The result of the script is folder work/model_1 with the set of 5 files:

X_ecg_train.npy

X_ecg_test.npy

y_train.npy

y_test.npy

labels.npy

We use this set of 5 files for further experiments and as a target dataset for AI/ML models. Such

preprocessing was found to be optimal together with the optimal AI/ML model as a result of

repeated tests, analysis, changes, and modifications of all components of the system, from the

type of input data to the model synthesized in the FPGA. Of course, the optimality of this

solution was determined by many factors, one of which is the simplicity of the entire system

design cycle and the compactness of the solution.

At this stage, preprocessing ends and the work of AI/ML models begins.
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AI/ML, what exactly are we dealing with?
AI is a set of technologies built into a system that allows it to reason, learn, and act to solve

complex problems by mimicking the cognitive functions associated with human intelligence. It

sounds cool, abstract and incomprehensible. But slam the door and dive into the essence of the

project! Rather, we have developed machine learning (ML), which is a type of artificial

intelligence that automatically allows a machine or system to continue learning and improving

on its own based on experience using a mathematical data model, helping it learn without direct

instructions. In short, ML is AI that can automatically adapt with minimal human interference.

Deep Learning is a subset of ML that uses artificial neural networks to mimic the learning

process of the human brain. From a marketing point of view, it is better to say that we made a

system with AI, but from a technical point of view it is more correct to call it ML or even Deep

Learning(DL). Deep Learning studies the development of mathematical methods that allow

software to learn autonomously, without explicitly describing each operating rule. In our case, its

goal is to extract hidden features from ECG data that allow us to assign each input signal to a

specific class. The catch is that there is no rule statement, but there is an

adaptive model that adjusts its parameters according to the input data it

receives, improving the resulting estimates as new input samples arrive

during training. Later we are going to explain NNs in detail by going

through their components step by step. For now, given the diagram, just

keep in mind that we use a few types of neural networks as part of our

artificial intelligence algorithm. Let's look at our model without details.

1-Dimensional Convolution Neural Network (CNN) layers create feature

maps that extract a region of the 5-peak ECG signal, which is divided into

segments and sent for nonlinear processing after flatten. Each neuron

only processes the information from a small part of the ECG. This

processing uses principles from linear algebra, especially matrix

multiplication, to detect patterns within ECG signals. The CNN contains

two convolutional layers followed by pooling. In this way, we can extract

some features from the ECG data and feed them into the next chain of the

AI algorithm for classifying. All these algorithms being implemented on
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FPGA meet or exceed the performance of GPUs but have a lower power consumption that is

well suited for embedded applications.

Something from AI/ML that we use here
● An AI system performs its task by typically predicting output values based on given

inputs using a machine learning algorithm.

● In general, ML is all about making predictions and classifications. In this project, we use a

learning algorithm to make categorical classification. In a classification problem, we use

the information contained in the data to predict the class yi of the example 𝑥i.

● Most ML algorithms are broadly categorized as being either supervised or unsupervised.

In this project, we use the algorithms of supervised classification. These algorithms deal

with clearly labeled ECG data. Labels (classes) are stored in the labels.npy file.

● We need the ECG data to:

○ "Train" the machine learning methods using X_ecg_train.npy and y_train.npy files.

○ "Test" the machine learning methods using X_ecg_test.npy and y_test.npy files.



13

Neural Networks
There are several types of machine learning algorithms. We use Artificial Neural Networks.

ANNs, or simply Neural Networks (NNs), are groups of algorithms that recognize patterns in

input data using building blocks called neurons. These neurons are much like the neurons in the

human brain.

Convolutional Neural Networks (CNNs)

A convolutional neural network (CNN) is a type of neural network that learns features by itself via filter (or kernel)
optimization. There is no special “physical” meaning in the 1D convolution operation, except that by convolving the

ECG signal with a kernel (another signal), we obtain a new signal, which is the sum of an infinite number of copies of

the impulse response, each of which is shifted by a delay time. Something like a “weighted sum of memories” or

echoes. Thus a discrete-time convolution generalizes a moving average. Like a moving average, it smooths a time

series, as we shall see. A CNN is effective at identifying simple patterns in data, which are then used to form more

complex patterns in higher layers. We use a 1D CNN, which uses multiple convolutional layers that are not fully

connected but pooled. Pooling involves chunking a vector into non-overlapping equal-sized groups or ‘pools’, and then

taking a summary statistic for each group. This further smooths out noise in the local dynamics and downsamples

the tensor that is passed on to subsequent layers. CNN layers create feature maps that record a region of the ECG

signal, which is eventually divided into segments and sent for nonlinear processing.

Dense Neural Networks (Fully Connected layers)

A Neural Network in machine learning model in which each layer is deeply connected to the previous layer. One of the
simplest options for neural networks. They transmit information in one direction through various input nodes until it

reaches the output node. Since this is a supervised learning algorithm that classifies data into categories, it is a

classifier with neurons in the last layer containing the probabilities that the ECG under test belongs to a certain class.

As we can see in the diagram given above, the Neural Network consists of an input layer, an

output (target) layer, and a hidden layer in between the two. Each layer consists of nodes. The

layers are connected, and these connections form a network of interconnected nodes. In

general, a Neural Network consists of Nodes and Connections between the Nodes.
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Understanding Neurons in Deep Learning
Neurons are a critical component of any AI machine learning algorithm. Neurons in ML are

Nodes through which data and computation flow. Here is a diagram of the functionality of a

Neuron:

Once a Neuron receives its inputs from the neurons in the preceding layer, it adds up each signal

multiplied by its corresponding weight. The bias value is included in this value. This sum is

passed on to an activation function. The activation function calculates the output value for the

Neuron. There are many bent or curved lines that we can choose for an activation function:

● ReLU - Rectified Linear Unit f(x) = max(0, x)

● softplus f(x) = log(1 + e^x)

● sigmoid f(x) = e^x / (e^x + 1)

● hyperbolic tangent f(x) = tanh(x) = sinh(x) / cosh(h) = (e^x - e^-x) / (e^x + e^-x)
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We consider a slightly modified version of the simplest model of a neuron proposed by Frank

Rosenblatt in 1957, called ‘Perceptron’. All modifications are made for the sake of simplicity,

because we are not going to deeply explain the operation of neural networks. Our neuron is a

mathematical function:

𝑦 = 𝑚𝑎𝑥 0,
𝑗 =1

𝑛

∑ 𝑥
𝑗
𝑤

𝑗
 +  𝑏( )( )

It takes n numbers as input, which we denote as xj, where j stands for index of input. For each

input xj neuron assigns another number wj. A vector consisting of these numbers wj is called

Weights vector or parameters. This vector also includes bias b. These parameters make each

neuron unique and are fixed during “Test”-ing. But during “Train”-ing we are going to change

these numbers to "tune" our network.

A neural network is also a mathematical function. It is defined by a bunch of neurons connected

to each other. This means that the output of one nonlinear function is used as input to other

nonlinear functions, and all functions have trained parameters and operate on vectors. Thus,

neurons, being mathematical functions with input data of a fixed length, when connected to a

network, will also require data of a fixed length at the input layer of this network. We’re going to

pass our ECG samples as inputs to our neural network. These ECG samples are an array of

numbers, each of which indicates the amplitude of the signal in the ECG lead during

analog-to-digital conversion. We cut a window in the multi-lead ECG data, and pass all these

numbers as a vector to the input layer of the network. After a chain of calculations in the

previous layers, our neuron, being inside the network, receives data in the form of an array of

numbers, each of which indicates some information associated with some feature of the ECG

data that we fed to the input of our network.

With a nonlinear calculation, the neuron produces data where information associated with

certain features of the ECG data is more characteristic. When classifying an ECG, we need the

output of our neural network to be a number between 0 and 1 so that we treat it as a probability.

However, our solution does some tricks to avoid complex nonlinear calculations keeping just

simple ReLU ones. More details will be presented later in this document.
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Loss Function and Training
During training, we pass each ECG example 𝑥i through the network to produce 4 probability

numbers as a product of activation functions of 4 neurons on the last layer. Loss function tells

us how good our neural network is for our task. The purpose of the loss function is to take the

output probabilities and measure the distance from the true values. The Categorical

Cross-Entropy function solves this problem. During model training, the model weights are

iteratively adjusted accordingly with the aim of minimizing the Cross-Entropy loss.The process

of adjusting the weights is what defines model training and as the model keeps training and the

loss is getting minimized, we say that the model is learning. When adjusting the neurons'

weights and biases, the optimization algorithm uses a learning rate parameter, which effectively

tells it how big the adjustments should be. Large values for the learning rate translate as large

adjustments, and smaller values translate as small adjustments. Large adjustments can change

the values of the weights and bias by too much, causing the neuron's output to diverge even

more from the expected output. Very small adjustments

might mean that the algorithm is taking too long to learn.

In a neural network we think of inputs 𝑥, and outputs y as

fixed numbers. The variable with respect to which we’re

going to be taking our derivatives are weights w, since

these are the values we want to change to improve our

network. If we compute the gradient of the loss function

with reference to our weights and take small steps in the

opposite direction of gradient our loss will gradually

decrease until it converges to some local minima.

Working on the form and content of the input data, on the structure and parameters of the ML

model, we constantly trained and tested the model, finding out what accuracy indicators were

achieved as a result of certain changes made. The process of improving the performance of the

entire system is similar to how the ML model is trained, only the criterion for improving the

system is increased accuracy and fewer resources used, and for the ML model there is a loss.
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Tensorflow/Keras/QKeras
TensorFlow is a rich system for managing all aspects of a machine learning system. It is

developed by Google and is the de facto industry standard. TensorFlow is used to build and train

deep learning models as it facilitates the creation of computational graphs and efficient

execution on various hardware platforms. Keras is a high-level neural networks API, capable of

running on top of Tensorflow. It enables fast experimentation through a high-level, user-friendly,

modular and extensible API. Keras can also be run on both CPU and GPU. QKeras is a

quantization extension to Keras that provides drop-in replacement for some of the Keras layers,

especially the ones that create parameters and activation layers, and perform arithmetic

operations, so that we can quickly create a deep quantized version of Keras network. The

quantized model generally refers to models that use an 8-bit signed or unsigned integer data

format to encode each weight and activation. All experiments we do with Keras model that uses

32-bit float point format for all data that are in computation flow. After this Keras model is

prepared to be QKeras with reduced data format and then is re-trained in a manner of

quantization-aware training (QAT).

We use TensorFlow/Keras for developing the model and finding optimal solutions, but at the

implementation stage we use TensorFlow/QKeras. This is general practice for Edge ML.
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ML model that we build
Below is a summary of the quantized model we use for classification in the project. A simplified

diagram of this model is shown at the beginning of this brochure. This summary provides

precise, layer-by-layer information on how the model sees tensorflow:

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

conv_1 (QConv1D) (None, 1408, 4) 140

bn_conv_1 (QBatchNormaliza (None, 1408, 4) 16

tion)

relu_1 (QActivation) (None, 1408, 4) 0

pool_1 (MaxPooling1D) (None, 704, 4) 0

dropout_1 (Dropout) (None, 704, 4) 0

conv_2 (QConv1D) (None, 345, 2) 122

bn_conv_2 (QBatchNormaliza (None, 345, 2) 8

tion)

relu_2 (QActivation) (None, 345, 2) 0

pool_2 (MaxPooling1D) (None, 172, 2) 0

dropout_2 (Dropout) (None, 172, 2) 0

flatten (Flatten) (None, 344) 0

dense_1 (QDense) (None, 64) 22080

relu_3 (QActivation) (None, 64) 0

dropout_3 (Dropout) (None, 64) 0

output_dense (QDense) (None, 4) 260

=================================================================

Total params: 22626 (88.38 KB)

Trainable params: 22614 (88.34 KB)

Non-trainable params: 12 (48.00 Byte)

_________________________________________________________________
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This information we can find in the output cell №7:quantization.ipynb of quantization.ipynb

script that is Jupyter Notebook. The model itself is specified in code cell

№7:quantization.ipynb. The model data quantization formats are specified in the previous cell

№6:quantization.ipynb as:

model_kernel_quantizer = "quantized_bits(8, 0, alpha = 1)"

model_bias_quantizer = "quantized_bits(8, 0, alpha = 1)"

model_activation = "quantized_relu(8)"

The model is trained in the cell №10:quantization.ipynb with the following result:

The next cells perform converting the model to FPGA firmware with HLS4ML codesign.

Overview of the HLS4ML codesign
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The HLS4ML is a Python package that translates neural networks into FPGA firmware for

inference with very low latency and power consumption on FPGAs. It achieves this by utilizing

High-Level Synthesis (HLS) techniques, which convert high-level programming languages like

C++ or Python into digital hardware description languages such as VHDL or Verilog. These

hardware description languages can then be used to implement the models on FPGA or ASIC

platforms. The use of HLS with HLS4ML significantly increases accessibility to a wide user

community and greatly reduces firmware development time. By taking a neural network model

as input, HLS4ML generates C/C++ code that can be transferred into FPGA firmware by using an

HLS library. A significant outcome of the HLS4ML is the companion compiler, which translates

ML models from popular open-source software packages like Keras and PyTorch into RTL

(Register-Transfer Level) abstraction for FPGAs, using HLS tools. The HLS4ML tool enables to

prototype ML algorithms quickly for both firmware feasibility and performance without requiring

extensive Verilog/VHDL expertise. This significantly reduces the time required for algorithm

development cycles while preserving engineering resources.

Converting the model to FPGA firmware using
HLS4ML codesign
Now we will go through the steps to convert the model we trained to a resource-efficient but

quite low-latency optimized FPGA firmware with hls4ml. First, we will evaluate its classification

performance to make sure we haven't lost accuracy using the fixed-point data types. Then we

will synthesize the model with Vivado HLS and check the metrics of latency and FPGA resource

usage.

We choose 16-bit computation for all internals of the machine learning algorithms that hls4ml

converts using qmodel as a source, which in turn is a pre-trained Tensorflow/QKeras model

coded in Python. The hls_model is a Python representation of the hls4ml conversion with not

only the computations fully defined, but also a C++ implementation that is ready for high-level

synthesis. There are a few important items that configure hls4ml. Parameter io_stream hls4ml

to build algorithms taking into account that the model contains convolutions The

xc7z020clg400-1 is an FPGA chip of the PYNQ-Z2 board. The /hls4ml_prj parameter defines the
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path to the Vivado project, in which the hls4ml scripts and the Vivado scripts will generate a

full Vivado project and then synthesize the hardware description files with detailed reports.

Cell №13:quantization.ipynb makes such conversion:

import hls4ml

import plotting

config = hls4ml.utils.config_from_keras_model(qmodel, granularity = 'name')

# Set the precision, reuse factor, and strategy for the full model

config['Model']['Precision'] = 'ap_fixed<16,6>'

for Layer in config['LayerName'].keys():

config['LayerName'][Layer]['Strategy'] = 'Resource'

config['LayerName'][Layer]['ReuseFactor'] = 256

print("-----------------------------------")

plotting.print_dict(config)

print("-----------------------------------")

hls_model = hls4ml.converters.convert_from_keras_model(

qmodel,

hls_config = config,

io_type = 'io_stream', # Must set this if using CNNs!

output_dir = str(path_to_model_dir) + '/hls4ml_prj',

part = 'xc7z020clg400-1', # Just 280 BRAM_18K, 220 DSP48E, 106400 FF, 53200 LUT available

)

hls_model.compile()

After this conversion we can see the detailed structure of the ML model including precision of

calculation on all layers and precision of all parameters. Also, we can check accuracy for

bit-accurate emulation of the final solution that we expect on an FPGA.
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The following confusion matrix is the result that we should achieve at the validation stage by

running the test on a real PYNQ-Z2 board with FPGA:

We do not see sufficient degradation of accuracy compared to the previous matrix. It is very

important to check! The second important message is that this result is exactly what we should

get when testing the whole solution on a PYNQ-Z2 board with a real FPGA.

At cell №19:quantization.ipynb we built the Vivado project using the Vivado HLS backend.
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The last cell №20:quantization.ipynb makes the report. Let's look at the part of the report

that inform us about used resources of FPGA:

================================================================

== Utilization Estimates

================================================================

* Summary:

+-----------------+---------+-------+--------+-------+-----+

| Name | BRAM_18K| DSP48E| FF | LUT | URAM|

+-----------------+---------+-------+--------+-------+-----+

|DSP | -| -| -| -| -|

|Expression | -| -| 0| 2| -|

|FIFO | 32| -| 1796| 5044| -|

|Instance | 31| 135| 33228| 36912| -|

|Memory | -| -| -| -| -|

|Multiplexer | -| -| -| -| -|

|Register | -| -| -| -| -|

+-----------------+---------+-------+--------+-------+-----+

|Total | 63| 135| 35024| 41958| 0|

+-----------------+---------+-------+--------+-------+-----+

|Available | 280| 220| 106400| 53200| 0|

+-----------------+---------+-------+--------+-------+-----+

|Utilization (%) | 22| 61| 32| 78| 0|

+-----------------+---------+-------+--------+-------+-----+

This report shows the use of "clean" FPGA resources without the overhead of accompanying

hardware, which we use for comfortable testing when creating hardware accelerators that are

connected to Python code as an overlay, without deep diving into FPGA programming.
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Preparing bitstream
Bitstream notebook bitstream.ipynb builds HW Accelerator wrapping our ML solution with all

necessary hardware to have the possibility to load the solution into FPGA directly from Python

code. That friendly way to reprogram FPGA is possible due to PYNQ technology.

The cell №4:bitstream.ipynb builds the PYNQ project in the dedicated folder /hls4ml_prj_pynq.

The differences between the configuration that we did in quantization.ipynb are: backend =

'VivadoAccelerator' and board='pynq-z2'.

Of course, the confluence matrix in the output cell №6:bitstream.ipynb shows the same result

as the matrix in the output cell №21:quantization.ipynb:
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At the validation stage we'll transfer a few files from the earlier development and this

notebook into the ~/broshure_test directory on the PYNQ-Z2 board. The following commands

in cell №9:bitstream.ipynb archive these files into

`work/model_q/hls4ml_prj_pynq/package.tar.gz` that can be copied over to the PYNQ-Z2 board

and then extracted:
!mkdir -p work/model_q/hls4ml_prj_pynq/package
!cp work/model_q/hls4ml_prj_pynq/myproject_vivado_accelerator/project_1.runs/impl_1/design_1_wrapper.bit work/model_q/hls4ml_prj_pynq/package/hls4ml_nn.bit
!cp work/model_q/hls4ml_prj_pynq/myproject_vivado_accelerator/project_1.srcs/sources_1/bd/design_1/hw_handoff/design_1.hwh work/model_q/hls4ml_prj_pynq/package/hls4ml_nn.hwh
!cp work/model_q/hls4ml_prj_pynq/axi_stream_driver.py work/model_q/hls4ml_prj_pynq/package/
!cp work/X_ecg_test.npy work/y_test.npy work/model_q/hls4ml_prj_pynq/package
!cp deployment.ipynb work/model_q/hls4ml_prj_pynq/package
!tar -czvf work/model_q/hls4ml_prj_pynq/package.tar.gz -C work/model_q/hls4ml_prj_pynq/package/ .

At the end of this notebook we can find the report that shows the FPGA resource utilization

taking into account the overhead of the associated hardware that we use to connect to the

Python code as an overlay:

+----------------------------+-------+-------+-----------+-------+

| Site Type | Used | Fixed | Available | Util% |

+----------------------------+-------+-------+-----------+-------+

| Slice LUTs | 25483 | 0 | 53200 | 47.90 |

| LUT as Logic | 25237 | 0 | 53200 | 47.44 |

| LUT as Memory | 246 | 0 | 17400 | 1.41 |

| LUT as Distributed RAM | 22 | 0 | | |

| LUT as Shift Register | 224 | 0 | | |

| Slice Registers | 36988 | 0 | 106400 | 34.76 |

| Register as Flip Flop | 36988 | 0 | 106400 | 34.76 |

| Register as Latch | 0 | 0 | 106400 | 0.00 |

| F7 Muxes | 1407 | 0 | 26600 | 5.29 |

| F8 Muxes | 396 | 0 | 13300 | 2.98 |

+----------------------------+-------+-------+-----------+-------+

================================================================

== Utilization Estimates

================================================================

* Summary:

+-----------------+---------+-------+--------+-------+-----+

| Name | BRAM_18K| DSP48E| FF | LUT | URAM|

+-----------------+---------+-------+--------+-------+-----+

|DSP | -| -| -| -| -|

|Expression | -| -| 0| 20| -|

|FIFO | 8| -| 179| 552| -|

|Instance | 63| 135| 36630| 43416| -|

|Memory | -| -| -| -| -|

|Multiplexer | -| -| -| 36| -|

|Register | -| -| 4| -| -|

+-----------------+---------+-------+--------+-------+-----+

|Total | 71| 135| 36813| 44024| 0|

+-----------------+---------+-------+--------+-------+-----+

|Available | 280| 220| 106400| 53200| 0|

+-----------------+---------+-------+--------+-------+-----+

|Utilization (%) | 25| 61| 34| 82| 0|
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+-----------------+---------+-------+--------+-------+-----+

Real HW test
We test the solution on the PYNQ-Z2 board collecting ML inferences with the test dataset. In

such a way we test ML algorithms, HLS4ML conversion, Vivado HLS synthesis, and operating

the FPGA with developed bitstream. The heart of the PYNQ-Z2 board is a Xilinx system-on-a-chip

that contains an embedded Linux machine with a Cortex A processor and an FPGA on a single

die. We configure the FPGA as a hardware accelerator that we call from Python code as an

overlay function. This function fully implements our ML algorithm and works as an external

Neural Network processor for Python code. On a Linux system, Python code is only needed as a

convenient interface to this network.

First, you'll need to follow the [setup instructions for the PYNQ-Z2

board](https://pynq.readthedocs.io/en/latest/getting_started/pynq_z2_setup.html). Typically,

this includes connecting the board to your host via ethernet and setting up a static IP address

for your host (192.168.2.1). The IP address for the PYNQ-Z2 is 192.168.2.99. The default

username and password is xilinx.

https://pynq.readthedocs.io/en/latest/getting_started/pynq_z2_setup.html
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Next, you'll transfer the following files from the earlier development into ~/broshure_test

directory on the PYNQ-Z2:

./X_ecg_test.npy

./y_test.npy

./hls4ml_nn.hwh

./deployment.ipynb

./hls4ml_nn.bit

./axi_stream_driver.py

You can just simply copy this archive `work/model_q/hls4ml_prj_pynq/package.tar.gz` to the

PYNQ-Z2 and extract it. To copy it to the PYNQ-Z2 with the default settings, the command would

be:

scp model_3/hls4ml_prj_pynq/package.tar.gz xilinx@192.168.2.99:~/broshure_test

Or, you can navigate your web browser to http://192.168.2.99. You will see the JupyterHub

running on the PYNQ-Z2. And then copy the archive by Jupyter.

Open a terminal and extract the tarball:

cd ~/broshure_test

tar xvzf package.tar.gz

Or, just create new script and run Jupyter Notebook cell like:

!tar xvzf package.tar.gz

Open and run the deployment.ipynb script. Restart the kernel and then re-run the whole

notebook. The Python code loads the bitstream into the FPGA, which takes our time. After a few

seconds, the FPGA is ready and the actual hardware test begins. As a result, the y_hw.npy file

with a collection of inferences will be created. The report tells us about 359 inferences per

second, which is a good performance.

-------------------------

(0, 4)

idx_start: 0, idx_end: 500

X_test_chunk shape: (500, 2831, 2)

y_test_chunk shape: (500, 4)

Classified 500 samples in 1.392252 seconds (359.1303873149401 inferences / s)

500 inferences have been got

idx_rest: 3500

========== len(y_hw): 500



29

Validation
We come to the final stage of development to validate the whole solution. We have to copy the

y_hw.npy file from our PYNQ-Z2 board into the `work/model_q` folder of our instrumental

platform (Ubuntu host).

We run validation.ipynb notebook and take the following confusion matrix:

Congratulations! We have got a validated ML solution based on FPGA with good accuracy and

performance.
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Vivado side details
Let's run Vivado to see the project as an FPGA-based solution with implemented hardware

details. Just type the following in bash terminal:

/tools/Xilinx/Vivado/2019.2/bin/vivado

After launching the Vivado development environment, go to the top bar and open the project:

File -> Project -> Open -> ecg/work/model_q/hls4ml_prj_pynq/myproject_vivado_accelerator/project_1.xpr

Alternatively you can type the following in bash terminal:

/tools/Xilinx/Vivado/2019.2/bin/vivado ~/ecg/work/model_q/hls4ml_prj_pynq/myproject_vivado_accelerator/project_1.xpr

You should get something like the following:
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As you can see we have a full Vivado project with a successfully generated FPGA-bitstream

that can be downloaded into PYNQ-Z2 as Python overlay. And the project is already completely

built.

The HLS4ML scripts created the project under the hood without burdening us with this work, but

we can study everything in the Vivado and Vivado HLS integrated environments as if we had

created it. Let's look at the visualization of the floorplan of the FPGA-implemented accelerator by

clicking "Open Implemented Design" in the Vivado GUI:

This picture gives an idea of

​​the distribution of FPGA

hardware resources for the

implementation of the

functions of the model itself

and auxiliary functions that

together implement the ML

accelerator as a Python

overlay.

Obviously we are more interested in the functions of the model itself and all sorts of reports that

we can extract from the Vivado integrated development environment to evaluate the

effectiveness of the synthesis. Let's study the project in more detail.
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On the top of the project we have wrapped block design that looks like the following:

You can see the Processing System with some blocks of Programmable Logic.

Ignoring the reset block, peripherals, and interconnection blocks, let's move on to the hier_0

block, which implements ML as a hardware accelerator with Direct Memory Access:

Block myproject_axi_0 is the

hardware itself that

implements our pre-trained

ML model as an IP module

synthesized by Vivado HLS.

In Xilinx Vivado, an IP

module (Intellectual

Property module) refers to

pre-designed, pre-verified

blocks of logic or cores that

can be used to accelerate

the design process.
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Let's look into myproject_axi_0 block as a product of Vivado HLS. The log file is the key for

understanding and is located at:

~\ecg\work\model_q\hls4ml_prj_pynq\vivado_hls.log

/tools/Xilinx/Vivado/2019.2/bin/vivado_hls
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Appendix
Installation of development environment on Linux Ubuntu 22.04.03
Note! You should have at least 250GB of free space available to install all of the HLS4ML/Xilinx tools and 32GB -
64GB of RAM with at least 8 CPU cores you can dedicate to them.

Note2! Always keep your Linux system up-to-date with APT (Advanced Packaging Tool):
~$ sudo apt update && sudo apt -y upgrade && sudo apt -y autoremove

Note3! For a completely fresh/clean installation you probably need the following list of the required package
dependencies installed:

$ sudo apt install make

$ sudo apt-get install git

Note4! Before downloading anything from Xilinx's website, there are some dependencies required by
Vivado/Vitis/PetaLinux that need to be installed beforehand. Many of the libraries and tools PetaLinux has

dependencies on in the host machine have 32-bit libraries, thus the 32-bit architecture i386 needs to be added to the

host to compile them. This is done using the package management system, dpkg:

$ sudo dpkg --add-architecture i386

$ sudo apt install libc6-dev-i386 net-tools

$ sudo apt install libtinfo5

Install Google Chrome:

~$ wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb

~$ sudo apt -y install ./google-chrome-stable_current_amd64.deb

~$ google-chrome --version

Installing Miniconda

$ mkdir -p ~/miniconda3

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh

~$ bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3

~$ source ~/.bashrc

~$ ~/miniconda3/bin/conda init bash

~$ rm -rf ~/miniconda3/miniconda.sh

~$ conda config --set auto_activate_base false

At the moment of composing the manual, there was an installed conda version:
~$ conda -V

conda 23.10.0
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Installing HLS4ML

Running C simulation from Python requires a C++11-compatible compiler. On Linux, a GCC C++

compiler g++ is required:
$ sudo apt install g++

The hls4ml library depends on a number of Python packages and external tools for synthesis

and simulation. These libraries will be installed together with HLS4ML.

Create conda environment that we are going to use with HLS4ML:
~$ conda create --name hls4ml python=3.11.5 pip jupyterlab=4.0.8

~$ conda activate hls4ml

Correct required version dependencies (actual on 2024 March 12)
~$ pip install tensorflow-model-optimization==0.7.5

Optional:
~$ pip install tensorflow==2.15.0

Install HLS4ML
~$ pip install hls4ml[profiling]==0.8.1

Install additional dependencies
~$ conda install pywavelets

~$ conda install openpyxl

~$ conda install -c conda-forge pydot

~$ conda install -c conda-forge graphviz
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Installing Xilinx Vivado

Download Vivado HLx 2019.2: All OS installer Single-File and unpack it:
https://www.xilinx.com/member/forms/download/xef.html?filename=Xilinx_Vivado_2019.2_1106_2127.tar.gz

We should unpack a large archive. To see the progress of this unpacking install the pv utility:
$ sudo apt install pv

Then unpack:
$ pv Downloads/Xilinx_Vivado_2019.2_1106_2127.tar.gz | tar -xz

Or unpack it in blind mode:
~$ tar -xf Downloads/Xilinx_Vivado_2019.2_1106_2127.tar.gz

~$ sudo ./Downloads/Xilinx_Vivado_2019.2_1106_2127/xsetup

Press Next button to ignore the OS version warning in the welcome window and continue

installation in the window with a proposition to get a newer version. We need a strict Xilinx

Design Tool version 2019.2. Agree in the check boxes for Licence and Condition in the next

window. Select Vivado HL WebPACK and leave all default product and installation options in the

next window.

Run Vivado to test (and check/load license):
~$ /tools/Xilinx/Vivado/2019.2/bin/vivado

Exit Vivado.

Alternatively, we can install Vitis that includes both Vitis and Vivado :

Xilinx_Vitis_2019.2_1106_2127.tar.gz

https://www.xilinx.com/member/forms/download/xef.html?filename=Xilinx_Vivado_2019.2_1106_2127.tar.gz
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Adding PYNQ-Z2 board

From the TUL manufacturer website: www.tulembedded.com/fpga/ProductsPYNQ-Z2.html load

file: https://dpoauwgwqsy2x.cloudfront.net/Download/pynq-z2.zip

Install PYNQ-Z2 board files:

$ sudo cp -r <path to>pynq-z2 /tools/Xilinx/Vivado/2019.2/data/boards/board_files/

Once the installer has completed, it is good to double-check the installation by first running

Vivado:
~$ source /tools/Xilinx/Vivado/2019.2/settings64.sh

~$ vivado

Test project with PYNQ-Z2 board

http://www.tulembedded.com/fpga/ProductsPYNQ-Z2.html
https://dpoauwgwqsy2x.cloudfront.net/Download/pynq-z2.zip
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Close Vivado or open a new terminal window and launch Vivado HLS:
$ vivado_hls

The Vivado installer does not install the USB drivers required to recognize an FPGA on a Linux

system, regardless of whether the option was checked or not. In order to install these drivers,

navigate to the driver installer and run it:
$ cd /tools/Xilinx/Vivado/2019.2/data/xicom/cable_drivers/lin64/install_script/install_drivers

$ ./install_drivers

In order to use the USB drivers with a serial terminal, each user that will be using serial terminals

must be added to the dialout group. Current user can be added to the dialout group with:
$ sudo adduser $USER dialout
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Vivado HLS 2019.2 requires patching to overcome the Y2K22 problem. Download the patch

zip file from the AMD-Xilinx support article for the issue here. Then unzip it into Xilinx installation

directory /tools/Xilinx:
$ cd ~/Downloads

~/Downloads$ sudo unzip y2k22_patch-1.2.zip -d /tools/Xilinx/

Xilinx 2019.2 products patch process requires python version 2.7.5 or later. Also, If you are

patching Xilinx 2019.x release or later you can use python installed with Xilinx tools. Install the

libpython2.7-dev package then set the LD_LIBRARY_PATH variable as instructed in the patch

README, and that was enough for the patch to run successfully:
~/Downloads$ sudo apt install libpython2.7-dev

~/Downloads$ export LD_LIBRARY_PATH=$PWD/Vivado/2019.2/tps/lnx64/python-2.7.5/lib/

Change directories into the Xilinx installation directory and run the patch with root privileges:
~/Downloads$ cd /tools/Xilinx/

/tools/Xilinx$ sudo Vivado/2019.2/tps/lnx64/python-2.7.5/bin/python2.7 y2k22_patch/patch.py

When successful, the output looks as such:

[2023-12-07] INFO: This script (version: 1.2) patches Xilinx Tools for HLS Y2k22 bug for the following release:

2014.*, 2015.*, 2016.*, 2017.*, 2018.*, 2019.*, 2020.* and 2021.*

[2023-12-07] UPDATE: /tools/Xilinx/Vivado/2019.2/common/scripts

[2023-12-07] COPY: /tools/Xilinx/y2k22_patch/automg_patch_20220104.tcl to /tools/Xilinx/Vivado/2019.2/common/scripts/automg_patch_20220104.tcl

Adding AMD/Xilinx license

You need to obtain a Xilinx.lic file to load it to Vivado. Of course, you need to get a license from

AMD/Xilinx.

In Vivado IDE install license as the follows:

Help>Manage License>

Get License>Load License>Copy License

Manage License>View License Status

Close Vivado Licence Manager

https://support.xilinx.com/s/article/76960?language=en_US
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